Difference between revisions of "Dash - Plotly"

From Sinfronteras
Jump to: navigation, search
(Created page with "==Dash== https://plot.ly/dash/ https://dash.plot.ly/?_ga=2.87536863.631018149.1572391590-265914126.1570370926 '''Material from the Udemy's course I'm doing:''' https://www....")
 
Line 1: Line 1:
 +
==Word cloud==
 +
https://github.com/amueller/word_cloud
 +
 +
https://community.plot.ly/t/wordcloud-in-dash/11407/4
 +
 +
https://community.plot.ly/t/solved-is-it-possible-to-make-a-wordcloud-in-dash/4565
 +
 +
 +
===Minimal example===
 +
<syntaxhighlight lang="python3">
 +
"""
 +
Minimal Example
 +
===============
 +
Generating a square wordcloud from the US constitution using default arguments.
 +
"""
 +
 +
import os
 +
 +
from os import path
 +
from wordcloud import WordCloud
 +
 +
# get data directory (using getcwd() is needed to support running example in generated IPython notebook)
 +
d = path.dirname(__file__) if "__file__" in locals() else os.getcwd()
 +
 +
# Read the whole text.
 +
text = open(path.join(d, 'constitution.txt')).read()
 +
 +
# Generate a word cloud image
 +
wordcloud = WordCloud().generate(text)
 +
 +
# Display the generated image:
 +
# the matplotlib way:
 +
import matplotlib.pyplot as plt
 +
plt.imshow(wordcloud, interpolation='bilinear')
 +
plt.axis("off")
 +
 +
# lower max_font_size
 +
wordcloud = WordCloud(max_font_size=40).generate(text)
 +
plt.figure()
 +
plt.imshow(wordcloud, interpolation="bilinear")
 +
plt.axis("off")
 +
plt.show()
 +
 +
# The pil way (if you don't have matplotlib)
 +
# image = wordcloud.to_image()
 +
# image.show()
 +
</syntaxhighlight>
 +
 +
 +
<br />
 
==Dash==
 
==Dash==
 
https://plot.ly/dash/
 
https://plot.ly/dash/

Revision as of 17:41, 18 November 2019

Word cloud

https://github.com/amueller/word_cloud

https://community.plot.ly/t/wordcloud-in-dash/11407/4

https://community.plot.ly/t/solved-is-it-possible-to-make-a-wordcloud-in-dash/4565


Minimal example

"""
Minimal Example
===============
Generating a square wordcloud from the US constitution using default arguments.
"""

import os

from os import path
from wordcloud import WordCloud

# get data directory (using getcwd() is needed to support running example in generated IPython notebook)
d = path.dirname(__file__) if "__file__" in locals() else os.getcwd()

# Read the whole text.
text = open(path.join(d, 'constitution.txt')).read()

# Generate a word cloud image
wordcloud = WordCloud().generate(text)

# Display the generated image:
# the matplotlib way:
import matplotlib.pyplot as plt
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")

# lower max_font_size
wordcloud = WordCloud(max_font_size=40).generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()

# The pil way (if you don't have matplotlib)
# image = wordcloud.to_image()
# image.show()



Dash

https://plot.ly/dash/

https://dash.plot.ly/?_ga=2.87536863.631018149.1572391590-265914126.1570370926


Material from the Udemy's course I'm doing: https://www.udemy.com/course/interactive-python-dashboards-with-plotly-and-dash/


Dash apps consist of a Flask server that communicates with front-end React components using JSON packets over HTTP requests. https://www.tutorialspoint.com/python_web_development_libraries/python_web_development_libraries_dash_framework.htm



Installation

https://dash.plot.ly/installation

pip install dash==1.4.1  # The core dash backend
pip install dash-daq==0.2.1  # DAQ components (newly open-sourced!)

# Note: starting with dash 0.37.0, dash automatically installs dash-renderer, dash-core-components, dash-html-components, and dash-table, using known-compatible versions of each. You need not and should not install these separately any longer, only dash itself.


A quick note on checking your versions and on upgrading. These docs are run using the versions listed above and these versions should be the latest versions available. To check which version that you have installed, you can run e.g:

>>> import dash_core_components
>>> print(dash_core_components.__version__)


To see the latest changes of any package, check the GitHub repo's CHANGELOG.md file:

All of these packages adhere to semver.



Dash Layout

https://dash.plot.ly/getting-started

Dash apps are composed of two parts:

  • The first part is' the "layout" of the app and it describes what the application looks like.
  • The second part describes the interactivity of the application and will be covered in the next chapter.

Dash provides Python classes for all of the visual components of the application. We maintain a set of components in the dash_core_components and the dash_html_components library but you can also build your own with JavaScript and React.js.

To get started, create a file named `app.py` with the following code:

# -*- coding: utf-8 -*-
import dash
import dash_core_components as dcc
import dash_html_components as html

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

app.layout = html.Div(children=[
    html.H1(children='Hello Dash'),

    html.Div(children='''
        Dash: A web application framework for Python.
    '''),

    dcc.Graph(
        id='example-graph',
        figure={
            'data': [
                {'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name': 'SF'},
                {'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name': u'Montréal'},
            ],
            'layout': {
                'title': 'Dash Data Visualization'
            }
        }
    )
])

if __name__ == '__main__':
    app.run_server(debug=True, port=8051)

Es importante utilizar un port que no esté ocupado por otro proceso.



Examples


Example 2

import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

df = pd.read_csv(
    'https://gist.githubusercontent.com/chriddyp/'
    'cb5392c35661370d95f300086accea51/raw/'
    '8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/'
    'indicators.csv')

available_indicators = df['Indicator Name'].unique()

app.layout = html.Div([
    html.Div([

        html.Div([
            dcc.Dropdown(
                id='crossfilter-xaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Fertility rate, total (births per woman)'
            ),
            dcc.RadioItems(
                id='crossfilter-xaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ],
        style={'width': '49%', 'display': 'inline-block'}),

        html.Div([
            dcc.Dropdown(
                id='crossfilter-yaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Life expectancy at birth, total (years)'
            ),
            dcc.RadioItems(
                id='crossfilter-yaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'})
    ], style={
        'borderBottom': 'thin lightgrey solid',
        'backgroundColor': 'rgb(250, 250, 250)',
        'padding': '10px 5px'
    }),

    html.Div([
        dcc.Graph(
            id='crossfilter-indicator-scatter',
            hoverData={'points': [{'customdata': 'Japan'}]}
        )
    ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}),
    html.Div([
        dcc.Graph(id='x-time-series'),
        dcc.Graph(id='y-time-series'),
    ], style={'display': 'inline-block', 'width': '49%'}),

    html.Div(dcc.Slider(
        id='crossfilter-year--slider',
        min=df['Year'].min(),
        max=df['Year'].max(),
        value=df['Year'].max(),
        marks={str(year): str(year) for year in df['Year'].unique()}
    ), style={'width': '49%', 'padding': '0px 20px 20px 20px'})
])


@app.callback(
    dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'),
    [dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-year--slider', 'value')])
def update_graph(xaxis_column_name, yaxis_column_name,
                 xaxis_type, yaxis_type,
                 year_value):
    dff = df[df['Year'] == year_value]

    return {
        'data': [go.Scatter(
            x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
            y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
            text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],
            customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],
            mode='markers',
            marker={
                'size': 15,
                'opacity': 0.5,
                'line': {'width': 0.5, 'color': 'white'}
            }
        )],
        'layout': go.Layout(
            xaxis={
                'title': xaxis_column_name,
                'type': 'linear' if xaxis_type == 'Linear' else 'log'
            },
            yaxis={
                'title': yaxis_column_name,
                'type': 'linear' if yaxis_type == 'Linear' else 'log'
            },
            margin={'l': 40, 'b': 30, 't': 10, 'r': 0},
            height=450,
            hovermode='closest'
        )
    }


def create_time_series(dff, axis_type, title):
    return {
        'data': [go.Scatter(
            x=dff['Year'],
            y=dff['Value'],
            mode='lines+markers'
        )],
        'layout': {
            'height': 225,
            'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10},
            'annotations': [{
                'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom',
                'xref': 'paper', 'yref': 'paper', 'showarrow': False,
                'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)',
                'text': title
            }],
            'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'},
            'xaxis': {'showgrid': False}
        }
    }


@app.callback(
    dash.dependencies.Output('x-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value')])
def update_y_timeseries(hoverData, xaxis_column_name, axis_type):
    country_name = hoverData['points'][0]['customdata']
    dff = df[df['Country Name'] == country_name]
    dff = dff[dff['Indicator Name'] == xaxis_column_name]
    title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name)
    return create_time_series(dff, axis_type, title)


@app.callback(
    dash.dependencies.Output('y-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value')])
def update_x_timeseries(hoverData, yaxis_column_name, axis_type):
    dff = df[df['Country Name'] == hoverData['points'][0]['customdata']]
    dff = dff[dff['Indicator Name'] == yaxis_column_name]
    return create_time_series(dff, axis_type, yaxis_column_name)


if __name__ == '__main__':
    app.run_server(debug=True, port=8051)


Dash example2.png