
CCT

COLLEGE OF COMPUTING TECHNOLOGY - DUBLIN
BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

CLOUD VIRTUALIZATION FRAMEWORKS

Assignment 1
Designing and Implementing a Cloud Solution

Adelo Vieira
Student Number: 2017279

Lecturer: Greg South

May 11, 2020

Contents

1 Technical solution 1

1.1 Creating a VPC . 1

1.2 Subnet architecture . 2

1.2.1 Availability zone 1 . 2

1.2.1.1 Public subnet 1 . 2

1.2.1.2 Private Web-Tiers subnet 1 . 3

1.2.1.3 Private App-Tiers subnet 1 . 4

1.2.2 Replication of the subnet architecture in a second AZ . 5

1.3 Defining Servers Security Groups . 6

1.4 Launching a Web and App tiers instances and configuring the Web application 6

1.5 Creating Amazon Machine Images for the Web-Tier and App-Tier instances 7

1.6 Load Balancing . 8

1.7 Auto Scaling . 8

1.8 Database tier . 9

1.9 Storing Web-Accessible Content in Amazon S3 . 9

1.10 Caching with Amazon CloudFront . 9

2 Architecture diagram 11

3 Implementation of a proof of concept solution 13

3.1 Creating a VPC . 14

3.1.1 Configuring the VPC’s ACL . 15

3.2 Subnet architecture . 16

3.2.1 Adding a target to the IGW in the public-named subnets to make them really publics 18

3.3 Creating a NAT Gateway in each Public subnet . 20

3.4 Creating 2 new private route tables . 20

3.5 Defining Servers Security Groups . 22

ii

3.6 Launching a Web and App tiers instances and configuring the Web application 23

3.6.1 Launching the instances . 23

3.6.2 Accessing the instance using SSH and Installing the necessary packages 25

3.6.3 Uploading the web app and testing it . 27

3.7 Creating Amazon Machine Images for the Web-Tier and App-Tier instances 28

3.8 Load Balancing . 30

3.9 Auto Scaling . 32

3.10 Storing Web-Accessible Content in Amazon S3 . 33

3.11 Caching with Amazon CloudFront . 35

3.12 Cross-region disaster recovery . 36

3.12.0.1 Data replication . 36

4 Proposed solution report 37

Bibliography 40

iii

List of Figures

1.1 ACL for the VPC . 2

1.2 Security Groups for the EC2 Instance (Web and App tiers servers) . 6

1.3 Security Groups for the Aurora DB . 9

2.1 Architecture diagram . 12

iv

Task 1

Technical solution

1.1 Creating a VPC

First, we need to create a Virtual Private Cloud (VPC). A VPC is an Amazon Service that allows us to define a Virtual

Network1 where we can launch AWS resources, such as EC2 Instances.

The VPC will have the follosing features:

• Region: Europe (Ireland)

We have chosen this region because the largest part of our users is in Ireland.

• Inter-Domain Routing (CIDR) block - IP range: 10.100.0.0/20

This VPC includes 4,094 IPs between 10.100.0.1 and 10.100.15.254 (with some reserved).

• Route table: When you create a VPC, a routing table is automatically generated with a target to the Internet

Gateway:

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 IGW

• ACL: We only need HTTP/HTTPS and SSH traffic. The following ACL will allow only inbound and outbound

HTTP and HTTPS traffic from any IPv4 address. It also allows inbound SSH since we will need to remotely access

1A virtual network can be defined as a logically isolated section of the Amazon Web Services cloud

to our Linux instances via SSH. We haven’t allowed RDP traffic because our environment will be based only on

Linux instance.

ACL for the VPS

Inbound
Type Port Source Allow/Deny
HTTP 80 0.0.0.0/0 Allow
HTTPS 433 0.0.0.0/0 Allow
SSH 22 192.0.1.0/24* Allow

Outbound
Type Port Destination Allow/Deny
HTTP 80 0.0.0.0/0 Allow
HTTPS 433 0.0.0.0/0 Allow

* Network from which we will access our VPC

Figure 1.1: ACL for the VPC. Notice that the source allows for SSH need to match the network
from which we will access our VPC.

1.2 Subnet architecture

Now, in our VPC, we will be able to define our subnet architecture for high availability. Essentially, we will define 3

subnets that will be used to host our web and app servers. These 3 subnets will be created in a first availability zone and

then replicated to another availability zone.

1.2.1 Availability zone 1

1.2.1.1 Public subnet 1

We need a subnet that has a direct connection to the Internet gateway (a public subnet). This is necessary because our

servers will need Internet access for patching and updates.

It is important to notice that we won’t lanch Instance in this subnet or any other public subnet. Instead, we will launch

a NAT Gateway that will connect our Instance located in a private subnet with the Internet Gateway.

Page 2 of 40

The NAT Gateway will be provisioned with an Elastic IP Address (EIP). “An Elastic IP address will remain unchanged

over the life of the NAT Gateway”. [AWS Academy (2019a)]

Avoiding launching Instance in a public subnet is a security measure that makes sure that our servers are not exposed to

direct Internet access.

Features:

• IP range (IPv4 CIDR block): 10.100.1.0/24

This subnet includes 254 IPs2 between 10.100.0.1 and 10.100.0.254

• Public Route Table:

A Route Table defines how traffic flows into and out of a Subnet.

When you create a Subnet, it will be provided with a default Route Table, but this Route Table does not have a

connection to your Internet gateway. You will change it to use the Public Route Table.

Local traffic: The first entry specifies that traffic destined within the VPC’s CIDR range (10.100.0.0/20) will be

routed within the VPC (local).

Internet Gateway: This specifies that any traffic destined for the Internet (0.0.0.0/0) is routed to the Internet

Gateway (igw−). This setting makes it a Public Subnet. That is to say, because we have a Route Table that

has a connection to our Internet gateway, then, Public Subnet 1 is now Public, which means it can communicate

directly with the Internet.

Destination Target

10.100.1.0/24 Local

0.0.0.0/0 IGW

• ACL: The ACL of the VPN (Figure 1.1)

1.2.1.2 Private Web-Tiers subnet 1

In this private subnet we will deploy our Web Tiers Instances.

2Notice that some of these IPs are reserved and unusable

Page 3 of 40

As we already mentioned, the application will be hosted in private subnets. This way, we improve security since no direct

access from the Internet is possible. [AWS Academy (2019a)]

Features:

• Availability zone 1: eu-west-1

• IP range (IPv4 CIDR block): 10.100.3.0/24

Range: 10.100.3.1 - 10.100.3.254

• Private Route Table:

This route table will be in charge of sending Internet-bound traffic through the NAT Gateway.

Destination Target

10.100.11.0/24 Local

0.0.0.0/0 NAT-1

• ACL: The ACL of the VPN (Figure 1.1)

1.2.1.3 Private App-Tiers subnet 1

In this private subnet we will deploy our App Tiers Instances.

Features:

• Availability zone 1: eu-west-1

• IP range (IPv4 CIDR block): 10.100.5.0/24

• Private Route Table:

This route table will be in charge of sending Internet-bound traffic through Private App-Tiers subnet 1 >

NAT Gateway 1 > Internet Gateway.

Destination Target

10.100.12.0/24 Local

0.0.0.0/0 NAT-1

Page 4 of 40

ACL: The ACL of the VPN (Figure 1.1)

1.2.2 Replication of the subnet architecture in a second AZ

Amazon EC2 instances are not inherently highly available. They need to be provisioned in at least 2 different Availability

zones to make our environment highly available. So, if a failure causes the interruption of one of the availability zones, our

system will still be available through the second AZ. This is why we will replicate our subnet configuration in a second

AZ:

• Public subnet 2:

– IP range (IPv4 CIDR block): 10.100.2.0/24

– ACL: The ACL of the VPN (Figure 1.1)

– Public Route Table:

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 IGW

• Private Web-Tiers subnet 2:

– IP range (IPv4 CIDR block): 10.100.4.0/24

– ACL: The ACL of the VPN (Figure 1.1)

– Public Route Table:

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 NAT-2

• Private App-Tiers subnet 2:

– IP range (IPv4 CIDR block): 10.100.6.0/24

Page 5 of 40

– ACL: The ACL of the VPN (Figure 1.1)

– Public Route Table:

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 NAT-2

1.3 Defining Servers Security Groups

In Figure 1.3 we show the Security Groups that will be applied to our App-Tier Instance. The ones will be assigned to

the Web-Tier Instances are the same but without the rule that allows outbound traffic on port 3306. This is because only

the App-Tier servers will connect to the database.

Security groups for the Web-tier servers

Inbound
Type Port Source Allow/Deny
HTTP 80 0.0.0.0/0 Allow
HTTPS 443 0.0.0.0/0 Allow
SSH 22 192.0.1.0/24* Allow

Outbound
Type Port Destination Allow/Deny

HTTP 80 Allow

HTTPS 433 Allow

* Network from which we will access our VPC

10.100.5.0/24
10.100.6.0/24
10.100.5.0/24
10.100.6.0/24

Security groups for the App-tier servers

Inbound
Type Port Source Allow/Deny

HTTP 80 Allow

HTTPS 443 Allow

SSH 22 192.0.1.0/24 Allow

Outbound
Type Port Destination Allow/Deny
TCP 3306 Aurora DB IP Allow
HTTP 80 0.0.0.0/0 Allow
HTTPS 433 0.0.0.0/0 Allow

* Network from which we will access our VPC

10.100.3.0/24
10.100.4.0/24
10.100.3.0/24
10.100.4.0/24

Figure 1.2: Security Groups for the EC2 Instance (Web and App tiers servers). 3306 is the default port used by Amazon
Aurora, which is the database we are going to use

1.4 Launching a Web and App tiers instances and configuring the Web

application

We will launch two EC2 instances. One for the Web-Tier servers and the other for the App-Tier servers.

Page 6 of 40

The client wish to move to Linux based machines. So, we will propose the implementation of Ubuntu Server 18.04 LTS -

64 bits (x86) instances.

To respect the tech details required by the client, the following AWS instance must be used:

• Web-Tier:

– t2.small: 1vCPU 2 GiB for $0.023 per Hour3

• App-Tier:

– a1.larg : 2vCPU, 4 BiB

However, Medi-Advice also would like to avail of the free tier as much as possible in the proof of concept design. This is

why we will use t2.micro EC2 instance, which are eligible for the free tier.

1.5 Creating Amazon Machine Images for the Web-Tier and App-Tier

instances

Now that the application has been configured and is correctly running in our instances, we will create two Amazon Machine

Images (AMI), one for the Web-Tier instances and another for the App-Tier instances.

An AMI is a complete copy of the volumes of an instance. This way, when we launch a new instance from these AMI,

they will be created containing the same data as the original instance so they will be ready to run the Web App. [AWS

Academy (2019a)]

These images will be used later by the Auto Scaling group to create new instances that will be deployed to scale the

resources of the web application when needed.

3This EC2 instance is not eligible for the AWS free usage tier

Page 7 of 40

1.6 Load Balancing

A Load Balancer, is an escencial component of a highly available design. The Load Balancer distribute traffic accross

several instances.

A Load Balancer will check if the server is online before sending the request. If a server is down because it reached the

maximum number of requests that can manage, the Load Balancer will detect it and send the request to another server.

In our architecture, we will need two Load balancers. The first one will distribute requests coming from the Internet across

Web-Tier instances. A second one will be configured to distribute requests coming from the Web-Tiers instance across

App-Tiers instances.

1.7 Auto Scaling

One of the most important features of cloud architecture is the capability to automatically scale resources based on

demand.

This feature, that is commonly referred to as Scalability, avoid downtimes and thus provides high availability by increasing

resources when the system reached its maximum capability. Also, it provides cost-efficient by reducing resources when

the capabilities provisioned are no longer needed.

Two auto saling groups will be defined in our architecture. The first one will be in charge of provisioning or terminating

Web-Tiers instances based on the demand. The second one will manage App-Tiers instances.

The auto-scaling groups will be defined so the minimum number of servers in each tier will be 2. Because Medi-Advice is

expecting to double the number of users due to the coronavirus crisis, the auto-scaling group will automatically provision

the necessary resources to manage the increasing demand, but it will scale back when the situation returns to ’normal’.

This way, the company will only pay for the resources that are needed to manage the demand.

Page 8 of 40

1.8 Database tier

Security groups for the DB

Inbound
Type Port Source Allow/Deny

TCP 3306 Allow
10.100.5.0/24
10.100.6.0/24

Figure 1.3: Security Groups for the Aurora DB

1.9 Storing Web-Accessible Content in Amazon S3

Storing static large files in an EC2 instance is not a good practice. It actually generates critical issues that must be

avoided when designing a cloud infrastructure.

If we are building a highly available environment, we need common storage for all the instances of our infrastructure since

replicating the data across all the instances is not a good strategy at all.

Amazon S3 is an object storage service that provides high availability in a region. The data in an S3 bucket is automatically

replicated across 3 availability zones. [AWS Academy (2019c)]

Therefore, a good practice is to store files or content that is not going to change in an Amazon S3 bucket. Another

important point is that the content in an S3 bucket can be easily cached using Amazon Cloud CloudFront. We will talk

more about it in the next section.

In our design, we will create an Amazon S3 in our primary region and another one in the secondary region. We will of

course implement cross-region data replication between both buckets.

1.10 Caching with Amazon CloudFront

Caching refers to temporary store data in an intermediate location between the source and the final user so it can easily

be accessed from a closer location.

Caching is a critical element that should be implemented especially if our site is going to be used for people around the

world.

Page 9 of 40

Amazon CloudFront is a caching service that distributes content worldwide.

In the case of Medi-Advice, they are expecting to have a big demand in both Ireland and in the US. Due to the remoteness

of these main locations, the implementation of Caching become fundamental to the cloud infrastructure.

Because Medi-Advice is based in Ireland, it is logical to think the largest part of the customer lives in Ireland. This is

why we have chosen Ireland as our primary location. This way, we are looking to provide optimal services by reducing

Latency in our primary location.

Page 10 of 40

Task 2

Architecture diagram

ACL for the VPS and Subnets

Inbound
Type Port Source Allow/Deny
HTTP 80 0.0.0.0/0 Allow
HTTPS 443 0.0.0.0/0 Allow
SSH 22 192.0.1.0/24* Allow

Outbound
Type Port Destination Allow/Deny
HTTP 80 0.0.0.0/0 Allow
HTTPS 443 0.0.0.0/0 Allow

* Network from which we will access our VPC

Security groups for the Web-tier servers

Inbound
Type Port Source Allow/Deny
HTTP 80 0.0.0.0/0 Allow
HTTPS 443 0.0.0.0/0 Allow
SSH 22 192.0.1.0/24* Allow

Outbound
Type Port Destination Allow/Deny

HTTP 80 10.100.5.0/24
10.100.6.0/24 Allow

HTTPS 443 10.100.5.0/24
10.100.6.0/24 Allow

* Network from which we will access our VPC

Security groups for the App-tier servers

Inbound
Type Port Source Allow/Deny

HTTP 80 10.100.3.0/24
10.100.4.0/24 Allow

HTTPS 443 10.100.3.0/24
10.100.4.0/24 Allow

SSH 22 192.0.1.0/24 Allow

Outbound
Type Port Destination Allow/Deny
TCP 3306 Aurora DB IP Allow
HTTP 80 0.0.0.0/0 Allow
HTTPS 443 0.0.0.0/0 Allow

* Network from which we will access our VPC

ACL for the DB

Inbound
Type Port Source Allow/Deny

TCP 3306 10.100.5.0/24
10.100.6.0/24 Allow

Primary Region: Ireland Secondary Region: London

Amazon S3

VPC

Availability Zone 1

Public subnet 1

NAT-1

VPS ACL

Private Web-Tiers
subnet 1

Private App-Tiers
subnet 1

VPS ACL

VPS ACL

10.100.3.0/24

10.100.1.0/24

Availability Zone 1

Private Web-Tiers
subnet 2

Private App-Tiers
subnet 2

VPS ACL

VPS ACL

10.100.4.0/24

Public subnet 1

VPS ACL 10.100.2.0/24

NAT-2

AS Group 1

AS Group 2

Amazon S3

+

Aurora

10.100.0.0/20

IGW

+

Aurora

D
at

a
re

pl
ic

at
io

n
D

at
a

re
pl

ic
at

io
n

10.100.6.0/2410.100.5.0/24

Health check Fail-over

Private App-Tiers
subnet 2

VPC

Availability Zone 1

Public subnet 1

NAT-1

VPS ACL

Private Web-Tiers
subnet 1

Private App-Tiers
subnet 1

AS Group 2

VPS ACL

VPS ACL 10.100.5.0/24

10.100.0.0/20 Availability Zone 2

Private Web-Tiers
subnet 2

VPS ACL

VPS ACL 10.100.6.0/24

Public subnet 2

VPS ACL 10.100.2.0/24

NAT-2

AS Group 1Destination Target

10.100.0.0/20 Local

0.0.0.0/0 NAT-1

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 IGW

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 NAT-2

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 IGW

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 IGW

IGW

10.100.3.0/24 10.100.4.0/24

10.100.1.0/24

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 NAT-2

Destination Target

10.100.0.0/20 Local

0.0.0.0/0 NAT-1

D
at

a
re

pl
ic

at
io

n

Figure 2.1: Architecture diagram

Page 12 of 40

Task 3

Implementation of a proof of concept

solution

We were going to implement the regions configuration we explained in the first task. However, because of the restriction

of the AWS Starter Account we haven’t been able to use European regions but only US regions.

3.1 Creating a VPC

Page 14 of 40

3.1.1 Configuring the VPC’s ACL

Page 15 of 40

3.2 Subnet architecture

Page 16 of 40

Page 17 of 40

3.2.1 Adding a target to the IGW in the public-named subnets to make them really

publics

Page 18 of 40

Page 19 of 40

3.3 Creating a NAT Gateway in each Public subnet

3.4 Creating 2 new private route tables

These private route tables are going to be used so Private Web-Tiers subnet 1, Private Web-Tiers subnet 2, Private

App-Tiers subnet 1, and Private App-Tiers subnet 2 are able to route Internet-bound traffic through the NAT Gateways

created in the Public subnets.

Page 20 of 40

Page 21 of 40

3.5 Defining Servers Security Groups

Page 22 of 40

3.6 Launching a Web and App tiers instances and configuring the Web

application

3.6.1 Launching the instances

Page 23 of 40

Page 24 of 40

3.6.2 Accessing the instance using SSH and Installing the necessary packages

Page 25 of 40

Page 26 of 40

3.6.3 Uploading the web app and testing it

Page 27 of 40

3.7 Creating Amazon Machine Images for the Web-Tier and App-Tier

instances

Page 28 of 40

Page 29 of 40

3.8 Load Balancing

Page 30 of 40

Page 31 of 40

3.9 Auto Scaling

Page 32 of 40

3.10 Storing Web-Accessible Content in Amazon S3

Page 33 of 40

Page 34 of 40

3.11 Caching with Amazon CloudFront

Page 35 of 40

3.12 Cross-region disaster recovery

3.12.0.1 Data replication

Page 36 of 40

Task 4

Proposed solution report

In this report, we explain the design of an architecture for a web application that will be hosted in the AWS. The design

and solutions we provide are mainly based on the client’s requirements but always keeping in mind the best practices from

the AWS Well-Architected Framework.

In short, our goal is to propose the implementation of a secure and high available multitier architecture. In accordance

with the current Medi-Advice environment, we designed an environment based on three tiers: Web Tier, App Tier, and

Database Tier. To make our environment Highly Available, we have replicated the design in a second availability zone.

In addition, as mentioned in the client’s requirements, we will provide cross-region availability by replicating the design

in another region and implementing a multi-region failover.

Below is presented a short but concrete review of the most important elements of our technical solution. In case further

details are required at a particular point, we will provide links to the sections where more technical details of the proposal

are provided. We also recommend to always review the Architecture diagram in Figure 2.1. This is without any doubt

the best way to understand our solution.

1. Creating a VPC: A Virtual Private Cloud is an Amazon Service that will allow us to define a Virtual Networ:

• ACL attached to th VPC: After creating a VPC, we will configure its ACL. All the subnets created inside
the VPC will inherit the ACL associate with the VPC; unless a particular ACL is configured on a specific
subnet. Security is one of the main concerns in the design since Medi-Advice will manage very sensitive medical
information. Please see the ACL in figure 1.1.

2. Subnet architecture:

• Primary region: Ireland (eu-west-1):

– Availability zone 1: In our primary region, we will define a subnet architecture in a first AZ:

∗ Public subnet 1 We need a subnet that has a direct connection to the Internet gateway. This
is necessary because our servers will need Internet access for patching and updates. In this
Subnet, we will place a NAT Gateway that will provide outbound Internet connection to the
private subnets where the application will be hosted.

∗ Private Web-Tiers subnet 1 In this layer, we will deploy our Web-Tiers servers. It is
important to highlight that we won’t lanch Instance in this subnet or any other public subnet.
Instead, we will launch a NAT Gateway that will connect our Instance hosted in private
subnet with the Internet Gateway.

∗ Private App-Tiers subnet 1 This tier will be in charge of the App-Tiers instances.

– Availability zone 2: Then, we will replicate the subnet architecture in a second AZ:

∗ Public subnet 2

∗ Private Web-Tiers subnet 2

∗ Private App-Tiers subnet 2

3. Defining Servers Security Groups: As an extra layer of security, We will configure strict Security groups that will only
allow the necessary traffic. Please refer to Figure 1.3 if you want to review the security groups we will apply to our
instances.

4. Launching a Web and App tiers instances and configuring the Web application: In this part we will create 2 base
instances: one for the Web tier and another for the App tier. We will also install the packages we need and configure
our web application.

5. Creating Amazon Machine Images for the Web-Tier and App-Tier instances: We will create an AMI from each of the
2 instances configured in the last step. These images will be used later for the Auto Scaling Group to create new
instances in case more resources are needed.

6. Load Balancing: Two load balancers will be configured. One will distribute requests across the Web-tiers instance and
the other across the App-tiers instances.

7. Auto Scaling: Two Auto Scaling Groups will be configured. One for the Web tier and the other for the App tier. They
will launch or terminate instances automatically in response to the resources required by the application.

8. Database tier: We will manage our application’s database using Amazon RDS. Amazon RDS is inherently highly
available. Furthermore, by using Amazon RDS instead of a database hosted in an EC2 instance, we offload many
operational and maintenance responsibilities. [AWS documentation (a)]

9. Storing Web-Accessible Content in Amazon S3: Static assets-content must be stored in Amazon S3 instead of in an
EC2 instance. This is a good practice that provides benefits that will be described later in the corresponding section.
[AWS Academy (2019b)]

10. Caching with Amazon CloudFront: The process of storing data in an intermediary location between the request and

Page 38 of 40

the source is called caching. This process reduces cost and latency, so the requests are faster. [AWS Academy (2019b)]
f

11. Cross-region disaster recovery: Our design will provide cross-region availability by replicating the entire environment
in another region and implementing a multi-region failover with Amazon Route 53.

• Data replication from our primary Amazon S3 bucket to the Secondary S3 bucket in the other region.
• Data replication from our primary Amazon RDB to the Secondary Amazon RDB in the other region.

Page 39 of 40

Bibliography

AWS Academy : ACA Module 3 LAB: Making Your Environment Highly Available, 2019a. Version A5L5. 3, 4, 7

AWS Academy : Academy Cloud Architecting (ACA) - Module 07 Student Guide. Amazon Web Services, Inc., 2019b.
Version 1.1.5. 38, 39

AWS Academy : Module 7: Designing Web Scale Media. Amazon Web Services, Inc., 2019c. 9

AWS documentation : Amazon rds features, a. URL https://aws.amazon.com/rds/features/#ha. 38

AWS documentation : Network acls, b. URL https://docs.amazonaws.cn/en_us/vpc/latest/userguide/vpc-

network-acls.html.

AWS documentation : Security groups for your VPC. Amazon Web Services, Inc., c. URL https://docs.aws.

amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html.

https://aws.amazon.com/rds/features/#ha
https://docs.amazonaws.cn/en_us/vpc/latest/userguide/vpc-network-acls.html
https://docs.amazonaws.cn/en_us/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

	Technical solution
	Creating a VPC
	Subnet architecture
	Availability zone 1
	Public subnet 1
	Private Web-Tiers subnet 1
	Private App-Tiers subnet 1

	Replication of the subnet architecture in a second AZ

	Defining Servers Security Groups
	Launching a Web and App tiers instances and configuring the Web application
	Creating Amazon Machine Images for the Web-Tier and App-Tier instances
	Load Balancing
	Auto Scaling
	Database tier
	Storing Web-Accessible Content in Amazon S3
	Caching with Amazon CloudFront

	Architecture diagram
	Implementation of a proof of concept solution
	Creating a VPC
	Configuring the VPC's ACL

	Subnet architecture
	Adding a target to the IGW in the public-named subnets to make them really publics

	Creating a NAT Gateway in each Public subnet
	Creating 2 new private route tables
	Defining Servers Security Groups
	Launching a Web and App tiers instances and configuring the Web application
	Launching the instances
	Accessing the instance using SSH and Installing the necessary packages
	Uploading the web app and testing it

	Creating Amazon Machine Images for the Web-Tier and App-Tier instances
	Load Balancing
	Auto Scaling
	Storing Web-Accessible Content in Amazon S3
	Caching with Amazon CloudFront
	Cross-region disaster recovery
	Data replication

	Proposed solution report
	Bibliography

